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Abstract. We introduce a theoretical model for the compaction of granular materials by discrete
vibrations which is expected to hold when the intensity of vibration is low. The dynamical unit
is taken to be clusters of granules that belong to the same collective structure. We rigourously
construct the model from first principles and show that numerical solutions compare favourably
with a range of experimental results. This includes the logarithmic relaxation towards a statistical
steady state, the effect of varying the intensity of vibration resulting in a so-called ‘annealing’
curve, and the power spectrum of density fluctuations in the steady state itself. A mean-field
version of the model is introduced which shares many features with the exact model and is open
to quantitative analysis.

1. Introduction

Extrapolating bulk properties from the underlying microscopic dynamics is generally more
difficult with granular materials than with gases, a difficulty that has been attributed, at least
in part, to the lack of thermal averaging [1, 2]. Unlike molecules, granules are static at
room temperature and so cannot explore phase space without some external impetus. For
example, consider a column of loosely packed granules in a cylindrical container, where
loosely packedmeans that there are typically large gaps orvoids between neighbouring
granules. It is energetically favourable for the granules to collectively reorganize to a state
which minimizes these voids, since a more compact column will have a lower centre of
gravity and hence a lower potential energy. That this does not occur spontaneously is a
direct consequence of the lack of thermal motion. One way to allow the column to evolve
is simply totap or otherwise perturb the container, thus giving the granules a small amount
of kinetic energy with which to rearrange. This process has been studied empirically in the
context of industrial applications [3], but only recently have attempts been made to try to
understand the fundamental dynamics involved.

Mehta et al [4–6] employed a non-sequential Monte Carlo algorithm to simulate the
process on a microscopic level.Non-sequentialmeans that granules are allowed to move and
settle simultaneously, which is important in this context since it allows for the cooperative
reorganization of granule–granule contacts. These simulations predict that granular media
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should relax on two timescales, corresponding to individual granule motion and collective
processes respectively. However, this is not in accord with the experimental work of Knight
et al [7]. They measured the rate of compaction in a column of monodisperse glass beads
that was subjected to discrete vertical vibrations. The plot of density against the number
of vibrations was found to be best described byρ(t) ∼ (log t)−1, where the time ordinate
t is proportional to the number of taps. One possible reason for the discrepancy between
the simulations and the experiments may simply be that the regimes of vibration intensity
studied were different. The smallest vibration considered in the simulations corresponds to
a 5% increase in volume at every tap, which is much more than the experiments involved.

A number of models embracing a variety of theoretical approaches have been introduced
to try to account for the experimental findings. Of those we are aware of, one is
a phenomenological macroscopic model [8], but the remainder are all microscopic in
nature. The slow relaxation has been attributed by Ben-Naimet al to the large number
of reconfigurations required to bring enough small voids together to make one void large
enough to absorb another granule [9–11]. de Gennes also chose to focus on the voids
and found that a Poisson distribution of void sizes could give rise to the expected inverse
logarithmic relaxation [12]. Cogliotiet al have introduced a lattice model in which each
granule can be in one of two states with each state corresponding to a different geometrical
orientation [13, 14]. The motion between neighbouring granules is constrained by their
relative orientations, hence the rate of relaxation in their model is governed by a form of
geometrical frustration.

In this paper, we introduce a model for granular compaction which is neither
macroscopic nor microscopic but instead lies somewhere between these two extremes. It is
coarse grainedin that it takesclustersof granules as its dynamical unit rather than individual
granules. This approach is based on the picture of granular interactions described by Mehta
et al in relation to their simulations [4–6], except that here we are interested in the limit of
weak vibrations. The resulting model is strikingly similar to one already devised by Bak
and Sneppen in a wildly different context, that of biological evolution [15, 16]. In section 2
the model is described in detail and its physical basis is explained. Careful consideration
is given to the range of validity of our assumptions. Results of numerical simulations are
compared with the experimental findings in section 3. The exact solution of a mean-field
version of the model is investigated in section 4. Finally, we give a summary of the model
in section 5.

2. The model

Mehta et al picture the granular media as being subdivided into local clusters, as in
figure 1(a), where a cluster is defined as a group of granules belonging to the same
multiparticle potential well [4–6]. A vibration with an intensity equivalent to the binding
energy of a granule to its well causes that granule to be ejected and move independently of
the others. Under weaker vibrations, all the granules remain in the well but still reorganize
collectively, albeit on a slower timescale than individual particle motion. Although this
description seems to be valid for the range of intensities of vibration considered in their
simulations, it clearly fails for the much lower intensities relevant to the experiments [7, 11].
We believe that the picture is essentially correct but needs to be modified to describe the
behaviour of the system deep in the collective relaxation regime. To do this, we first need
to closely analyse exactly what is meant by a multiparticle potential well.

Any given configuration of an ensemble of particles can be represented by a single
point in the space of all possible configurations. Each allowed configuration has a well-



A model for granular compaction 109

Figure 1. An example of the process of subdividing granular media into local clusters, given
here for the case of two dimensions. (a) A collection of circular granules separated into clusters.
The heavy curves represent boundaries between neighbouring clusters. (b) The corresponding
lattice representation. Each site(i, j) denotes a single cluster.

defined potential energy, and so the time evolution of the ensemble under gravity can be
described by a walk in configuration space over a potential-energylandscape. Now, the
preferred state for each individual granule is simply resting at the bottom of the container.
If the granules did not interact, then the ensemble would trivially evolve to the global
minimum with every granule in its preferred state, i.e. all resting on the bottom. Of course,
real granules do interact, and one granule moving downwards will inevitably push some
of the surrounding granules upwards slightly. The ensemble is thusfrustrated in that it
cannot simultaneously satisfy each granule’s tendency to move downwards. In terms of the
potential-energy landscape, this frustration results in a rugged landscape with many local
minima separated by barriers of various heights. A schematic example is given in figure 2,
where for clarity we have compressed the entire configuration space onto a single axis.

The ensemble will be at a local minimum between perturbations. The effect of the
perturbation is to move the ensemble to a point higher up on the landscape before it again
relaxes, possibly to a different minimum. For the low-energy perturbations we are concerned
with here, the ensemble will usually move between nearby minima and consequently only
a small number of granules will change their position or orientation. Following Mehtaet al
we assume that these granules typically belong to some sort of collective structure, such
as an arch or bridge. Thus the system can be subdivided into localizedclusters, where a
cluster is now defined as theunit of collective reconfiguration. Furthermore, we map the
system onto a lattice in which every site corresponds to a single cluster, as in figure 1.
This lattice representation is implicitly static and so will not be valid if there is any form
of global motion in the system, such as convection or surface flow, although it should still
hold if there is only a limited amount of local motion. Large perturbations will involve
reorganization on a system-wide scale and the rapid rearrangement of cluster boundaries,
so the lattice representation is again expected to fail in such situations.

We now have a lattice of clusters, each of which move on their own individual potential-
energy landscapes. During the perturbation, each cluster is kicked to a point higher up
on its landscape, and those that subsequently relax to a new minimum have collectively
reconfigured. When a cluster reconfigures the contacts between it and adjacent clusters will
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Figure 2. Schematic example of a potential energy landscape for an ensemble of granules in
configuration space. The ensemble currently lies at the local minimum marked. The smallest
barrier to an adjacent minimum has a height ofbclust.

be redistributed in a highly non-trivial manner, the pattern of stress lines will be locally
distorted and the boundaries between adjacent clusters may shift slightly to accommodate
different granules. As a consequence, there will be a significant change in the landscapes
of the cluster itself and those near to it. In particular, we note that the heights of barriers
between minima will change. It may seem possible for one of the nearby clusters to move a
significant distance on its new landscape before finding a minimum, effectively constituting
another reconfiguration event. However, this contradicts the definition of a cluster as the
fundamental unit of collective reconfiguration, since any two clusters that interact in this
way should have been treated as a single cluster in the first place. Thus it can safely be
assumed that nearby clusters will not reconfigure, although the heights of barriers in their
landscapes will still change.

Significant progress can be made if we do away with the landscapes altogether and just
deal with the heights of barriers between minima instead. Indeed, as we are only interested
in the limit of weak perturbations, we can go one step further and disregard all but the
smallestbarrier, since this will almost always be the one that is involved anyway. Each
reconfiguration is assumed to alter the landscapes in such a complicated manner that, to
good approximation, the height of a barrier can be taken to be a random number drawn
from a suitable probability distribution. Although this distribution is in general unknowable,
we have found the model to be robust to a variety of different choices, including uniform,
exponential and Gaussian (robustnessmeans that the essential behaviour of the system
remains unchanged with respect to the modifications tried). We subsequently use the uniform
probability distributionP(b) for barrier heightb, where

P(b) =
{

1 for b ∈ [0, 1]

0 otherwise.
(1)

Consider now the effect of the external perturbation on just a single cluster with a
barrier height ofbclust. Suppose that the effect of the perturbation is for the cluster to
gain an energy ofe0 and to move to a corresponding point higher up on its landscape. If
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e0 < bclust, the cluster cannot cross even its lowest barrier and so we can be sure that it will
relax to the same minimum that it was at before. However, ife0 > bclust then there is a
non-zero probability that the cluster will reconfigure. We take this probability to be of the
form ∝ exp

{
−µ

(
e0

e0 − bclust

)}
for e0 > bclust

= 0 for e0 6 bclust

(2)

whereµ is a dimensionless constant. This may appear to be a somewhat arbitrary choice.
However, we have repeated the numerical simulations with a variety of different probability
functions and in all cases found that the system behaves in essentially the same manner. The
only requirements seem to be that there is a cut-off ate0 = bclust, corresponding to when the
impulse is too weak to cause any reconfiguration, and that the probability of reconfiguration
should increase with decreasing barrier height. The choice of (2) was ultimately made since
it is exponential in form, implying some sort of underlying Poisson process, and it has the
correct asymptotics fore0 → bclust ande0 →∞.

When the container is vibrated, the associated energy impulse is distributed in some
undefined manner to all the clusters in the system. We have observed little qualitative
difference arising from distributing this energy stochastically and henceforth assume that
each cluster receives the same energye0. It should be clear from (2) that the cluster with
the smallest barrier in the system, say of heightbmin, is the most likely to reconfigure. With
this observation, we can make a further simplification that also makes little difference to
the system behaviour, which is to assume that the cluster that reconfigures first isalways
the one with the barrier height ofbmin. As before, we have repeated the simulations with
this assumption relaxed and have found that the system behaves identically, hence we feel
justified in employing this simplification subsequently. Thus there is no longer any need
to simulate every perturbation until the cluster reconfigures, we can instead just reconfigure
the cluster immediately and advance the time by an amountδt , where

δt ∝ exp

{
µ

(
e0

e0 − bmin

)}
. (3)

This is the expected number of perturbations of energye0 required until the cluster with
barrier heightbmin reconfigures, and is the reciprocal of (2). Forbmin 6 e0, δt is taken to
be infinite.

We are now in a position to describe the model algorithmically. The granular media is
represented by a lattice, each site of which corresponds to a unit of collective reconfiguration,
i.e. a cluster. The model is robust to variations in lattice connectivity, so without loss of
generality we choose a simple cubic array. Each cluster(i, j, k) has an associated potential-
energy barrier against reconfiguration,bijk, drawn from the probability distributionP(b)
given in (1). The external perturbation takes the form of an energy impulse distributed
uniformly throughout the system, each cluster receiving an amounte0. At each algorithm
step, the cluster with the smallest barrier in the system,bmin, is found. Ife0 6 bmin then the
perturbation is too weak to cause any reconfiguration events, the system is frozen and the
simulation is complete. Ife0 > bmin, the cluster in question reconfigures and consequently
its barrier and the barriers of the six adjacent clusters are redrawn from the same probability
distribution as before. The real time is increased by an amountδt defined in (3), and the
simulation moves on to the next algorithm step. Note that we do not employ periodic
boundary conditions, instead clusters at the faces, edges or corners of the lattice simply
have five, four or three adjacent clusters, respectively.
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Numerical solutions of the model are presented in the following section. For now,
we would like to remark upon the strong similarity between this model and a model of
biological evolution already devised by Bak and Sneppen [15]. The lattice sites in their
model represent differentspecies, each of which is assigned a barrier againstmutation
corresponding to the smallest barrier between local optima on a ruggedfitnesslandscape.
The species mutate and interact with adjacent species in much the same way that clusters
reconfigure and interact with adjacent clusters in our model. The primary difference between
the models is that, whereas clusters cannot move higher thane0 on their potential-energy
landscapes, corresponding to the strength of the external impulse, species are subject to no
such energetic constraints (there is no such thing as the ‘conservation of fitness’) and move
around their fitness landscapes spontaneously. As long as this difference is borne in mind,
we can draw upon the plethora of results already accumulated for the evolution model in
analysing our model of compaction (for a review see [16]).

3. Comparison with experiments

We begin by describing the numerical solution of the model for a system composed ofN

clusters. The distribution of barrier heights,Q(b), is defined such that a proportionQ(b)δb
of the clusters have a barrier height in the rangeb to b+ δb. As the system evolves,Q(b)
exhibits two qualitatively different regions, one for largeb and one for smallb. Large
barriers have either not been touched since the simulation began, or (more likely) they
have been redrawn from the uniform distributionP(b) as the consequence of an adjacent
cluster reconfiguring. As such,Q(b) for largeb must also be uniform, except for statistical
fluctuations. The situation is more complicated for small barriers since there is now the
added possibility of being selected as the minimum of the system. Very small barriers are
unlikely to last long and soQ(b) tails off to zero asb→ 0. The boundary between these two
regions is given by thegap functionG(t), which is the largest barrier height that has ever
been the minimum of the system. Finding the minimum barrier and giving it a new value
can be viewed as a flux from the regionb 6 G(t) to the regionb > G(t). When there are
no barriers left in the regionb 6 G(t), larger barriers will be selected as the minimum and
soG(t) will increase. If there were no interactions, there would only be this unidirectional
flux andG(t) would slowly approach 1 ast → ∞. However, with interactions there is
also a flux in the reverse direction, fromb > G(t) to b 6 G(t), corresponding to the new
values given to the barriers of adjacent clusters. HenceG(t) in fact approaches a constant
valueb∗ ∈ (0, 1), whereb∗ is a function of the lattice connectivity and the system sizeN .

We have not yet considered the effect of the parametere0. This appears in the equation
for δt , the time step between successive reconfiguration events, which also depends on the
current value of the minimum barrier (3). It can be seen from (3) thatδt becomes singular
when the minimum barrier is greater than or equal toe0. If e0 > b∗ then this can never
happen, since the minimum fluctuates between 0 andG(t), andG(t) → b∗ as t → ∞.
Accordingly the system approaches a statistical steady state in whichδt fluctuates around
some constant value. In contrast, ife0 < b∗ then it now becomes possible forG(t), and
hence also the minimum, to take values close toe0. As it does so,δt will diverge and the
system will freeze into a state in which every cluster has a barrier greater thane0 and there
can be no further reconfigurations. An example of howG(t) depends one0 is given in
figure 3 for a 40× 40× 40 lattice, for whichb∗ ≈ 0.21.

The model has so far been described in terms of the energy impulse per clustere0
and the barrier distributionQ(b). However, the experimental results were given in terms
of an accelerationparameter0 and thedensityρ. Before comparing the model with the
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Figure 3. Plot of the gap functionG(t) for various values ofe0 , for a 40× 40× 40 lattice.
Key: +—e0 = 0.4, ∗—e0 = 0.3, ◦—e0 = 0.25, ×—e0 = 0.2, •—e0 = 0.15, · · · · · ·—
e0 = 0.1. Note that in this and all subsequent plots we have taken the time step to be
δt = exp{e0/(e0 − bmin)}/N , whereN is the system size, so the units on the time axis are
arbitrary.

experimental results, we must first consider how these two sets of quantities are related.
We start withe0 and0. The acceleration parameter0 is defined as the peak acceleration
during the perturbation scaled by gravity,0 = amax/g. This was also found to be the
relevant parameter for the stability of a bead heap under vibration [17]. Although it seems
reasonable that a higher0 should mean more energy is distributed throughout the system
and hence a highere0, the precise relationship is likely to be very complex and we have
been unable to derive a formula relating the two. Instead we simply assume that, for the
small vibrations considered here, the relationship is approximately linear,e0 ∝ 0.

Trying to quantify the relationship between the barrier distribution and density is more
problematic since a potential-energy barrier is an intrinsically abstract concept. Nonetheless,
a rough formula can be derived as follows. Consider an individual cluster with a barrierbclust

and densityρclust. The cluster’s horizontal cross sectional area is assumed to remain roughly
constant throughout the compaction process, so the typical vertical separation between the
granule centres will be inversely proportional toρclust. The cluster cannot reconfigure unless
this vertical separation is increased to the order of the granule diameter, thus allowing the
granules to move over one another. Since the granule diameter is constant, the change in
height required for reconfiguration will also depend inversely uponρclust. The potential
energy gained by a particle is, of course, proportional to its height increase, sobclust also
varies inversely withρclust. Extrapolating this result over the entire system amounts to
finding the mean barrier heightb̄, so finally we have

b̄ ∼ ρ−1. (4)

This is obviously only a first-order approximation to what is likely to be a highly non-trivial
relationship between the distribution of barrier heights and the overall density. We expect
it to apply to large-scale trends in density variation but not for small fluctuations such as
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Figure 4. b̄(t) versus lnt for a range of values ofe0 . The data was taken from single runs on
a 40× 40× 40 lattice, for whichb∗ ≈ 0.21. From top to bottom, the values ofe0 are: 0.4, 0.3,
0.25, 0.2, 0.15, 0.1. Full curves have been used fore0 > b∗ and broken curves have been used
for e0 < b∗.

those that occur in the statistical steady state.
We are now in a position to test the model against the experimental results. As mentioned

in the introduction, the density was experimentally found to relax inverse-logarithmically
with time, ρ(t) ∼ (log t)−1 [7]. From (4) the corresponding relationship in terms of the
mean barrier height is thereforēb(t) ∼ log t , which will show up as a straight line on
a graph ofb̄(t) versus logt . Such a graph is given in figure 4 for a range of values of
e0. Linear behaviour is apparent over a broad range of densities fore0 > b∗, confirming
logarithmic relaxation towards the statistical steady state. Fore0 < b∗, the relaxation is
initially logarithmic but slows down as the frozen steady state is approached. This shows
that the predictions made by the model are consistent with the experimental data, although
it would be foolish to claim that this in any way proves the correctness of the model since
logarithmic relaxation has also been observed in many other models [8–10, 12–14]. Note
that although the logarithmic behaviour is robust, the actual values on the axes depend upon
which of the various arbitrary choices mentioned in the previous section have been made
and hence have no physical meaning.

Little has been said so far about initial conditions. Before the first selection of the
minimum barrierQ(b) is uniform over the entire range [0, 1], so that even a smalle0
will cause a significant amount of reconfiguration. This corresponds to a state ofminimum
compactivitywhich is very difficult to attain experimentally. For instance, there will always
be a certain amount of background noise, and the granules added later to the apparatus
will impact upon those already present, inevitably causing some compaction. Instead,
the experiments always started from aslightly compacted state with a density fraction
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Figure 5. The mean barrier height̄b in the final steady state as a function ofe0 . Note that since
b̄ ∝ (ρ0 − ρ)−1 ∼ ρ the vertical axis can also be identified as the (approximate) density. The
simulations were performed on a 10×10×10 lattice and averaged over 1000 runs.binit = 0.08
andb∗ ≈ 0.25.

of 0.577± 0.005. This initial compaction can be incorporated into the model by shifting
the time axis so that the origin corresponds to whenG(t) first becomes greater than a
parameterbinit > 0. Values ofe0 ≈ binit or less are too small to cause any significant further
compaction. This is readily apparent in figure 5, where we have plottedb̄ in the limit t →∞
againste0. The line is flat fore0 < binit , increases linearly forbinit < e0 < b∗ and levels
out again for highere0. This should be compared with the corresponding experimental plot,
which is figure 3 in [7], from which we estimate thatb∗ corresponds to0 ≈ 3.

An apparently anomalous feature of figure 5 is that the highest densities are to be
found, not for largee0, as might be expected, but instead for values ofe0 near the threshold
value b∗. This occurs because of finite-size effects. Recall that, fore0 > b∗, the barrier
distribution evolves to a state which is uniform forb > b∗ with a tail for b < b∗. It is
the very existence of this tail, which disappears in the thermodynamic limitN →∞, that
reduces the mean barrierb̄ for finite systems. Whene0 is slightly less thanb∗ then, although
the uniform region is slightly broader, the selection process can remove some of the barriers
from the tail permanently and so the net effect is to increaseb̄. An even greater degree of
compaction can be obtained if a system withe0 > b∗ is first allowed to self-organize to the
statistical steady state, thene0 is slowly reduced to zero to remove as much of the tail as
possible. Quickly reducinge0 will not give enough time for the selection process to work
before the system froze and sob̄ would barely change. An example of this process is given
in figure 6, where to accentuate the finite-size effects a 4× 4× 4 lattice was used. Nowak
et al have produced similar plots from their experiments, which they regard as a type of
annealing process [11, 18]. They label the lower branch of the graph, when the intensity of
vibration is increased for the first time, as ‘irreversible’. In the language of our model, we
prefer to call this theself-organizingbranch. The self-organizing branch meets an upper
reversiblebranch around the point0∗ ≈ 3. This is to be expected since, as mentioned in the
previous paragraph, this value of0 corresponds to the threshold valueb∗, that is, the point at
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Figure 6. Annealing curve for a 4× 4× 4 lattice, for whichb∗ ≈ 0.38. e0 first increases from
0.04 to 0.68 in steps of 0.04 (•), then decreases by the same step size from 0.68 to 0.04 (◦).
Finally, e0 is increased up to 0.68 again (∗). binit was set at 0.08. Each simulation was run
until t ≈ 156, and the final plot was averaged over 1000 such runs.

which the system can self-organize into the statistical steady state. According to the model,
the change in density along the upper branch is due to the effects of finite size, so there
should be a greater variation when larger beads are used in the same sized apparatus. This
is in agreement with the experiments except for when the largest bead size was used [18].
In this case, although the overall density variation was the greatest, a disproportionately
large amount of it occurred along the self-organizing branch, possibly due to the cylinder
walls aligning the beads into a highly compact crystalline configuration. Another feature
observed in the experiments is that the threshold value0∗ appears to increase when0 is
updated more rapidly. The model agrees with this and attributes it to the larger number of
steps that will take place before the system has had time to self-organize.

Fore0 > b∗ the steady state is statistical in nature, so another test for the model would be
to compare the fluctuations ofb̄ around its steady-state value with the fluctuations in density
measured experimentally. However, as previously mentioned, the argument relatingb̄ to ρ
is not expected to hold for small changes. The change in density caused by, say, a single
reconfiguration event will be sensitive to the exact positions of a large number of granules at
that instant in time. The experimental plot of density fluctuations is Gaussian in form [11],
indicative of the large number of independent factors involved. A more revealing distribu-
tion is the power spectrum of density fluctuations,S(f ), where the frequencyf is measured
in units of (taps)−1. Experimentally,S(f ) was found to obey the power lawS(f ) ∝ f −δ,
with δ = 0.9±0.2, for a broad range off . Apart from finite-size effects, the model predicts
a power law withδ = 1 [16]. When large intensities of vibration were applied in the exper-
iments, the power-law behaviour was broken up by regions withδ = 0, 0.5 or 2. We cannot
account for this and attribute it to the expected breakdown of the model for large vibrations.
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4. Mean-field analysis

The picture presented thus far can be extended by considering a mean-field version of the
model which is open to quantitative analysis. This simplified model exhibits many of the
traits apparent in the exact model, especially in the relaxation towards the statistical steady
state. However, it behaves very differently in the steady state itself, and we refer the
reader elsewhere for analysis of the original model in this much studied regime [15, 16].
The required mean-field approximation is to be achieved in two stages. First, all spatial
definition is removed. This means that, when the cluster with the smallest barrier in a
system ofN clusters is found and reconfigured,K other clusters are chosen at random from
the remainingN − 1 and their barriers given new values. TheseK clusters are equivalent
to the adjacent clusters in the original model, so for exampleK = 6 corresponds to a
three-dimensional system. The second simplification is to assume thatN is very large. In
this way the system can be described by continuous rather than discrete variables, to within
an error margin of O(1/N).

For the first part of this section, the evolution of the system will be described in terms
of a time variableτ which increases by 1/N between successive reconfigurations. The
inclusion of the variable time step given in (3) will be postponed until later. The system is
described by the cumulative barrier distributionC(b, τ), which is defined as the proportion
of clusters with barriers less thanb at timeτ and is related toQ(b, τ) by

C(b, τ) =
∫ b

0
Q(x, τ)dx. (5)

The timescale has been normalized to one reconfiguration per cluster per unitτ , soC(b, τ)
evolves according to

∂C(b, τ )

∂τ
= −θ(b − bmin(τ ))−KC(b, τ)+ b(K + 1) (6)

wherebmin(τ ) is the value of the minimum barrier in the system at timeτ and θ(b) = 1
for b > 0 and 0 otherwise. The removal of the minimum barrier has the effect of reducing
C(b, τ) for all values ofb > bmin(τ ) but leaves it unchanged forb < bmin(τ ). This is
handled by the first term on the right-hand side of (6). In a similar manner, the second and
third terms account for the selection of theK random nearest neighbours and theK+1 new
barrier values, respectively. It is straightforward to check that (6) preservesC(0, τ ) = 0,
C(1, τ ) = 1 andC(b1, τ ) > C(b2, τ ) for b1 > b2, for all values ofτ .

The rate equation (6) is not yet in a closed form because it involves the unknown
quantity bmin(τ ). We might naively try to write down a second equation givingbmin(τ )

in terms ofC(b, τ), perhaps something likeC(bmin(τ ), τ ) = 1/N . However, it must be
recalled that errors of O(1/N) have already been made in going from the discrete model
to this continuous description, and soC(b, τ) cannot be used to this degree of accuracy.
Indeed, any attempt to define the minimum barrier within a continuum framework is doomed
to failure for this very reason. We are forced to conclude that there can be no set of closed
equations in terms ofC(b, τ). All is not lost, however, since this problem can be partially
circumnavigated by use of the gap functionG(τ). As before,G(τ) is defined as the highest
value thatbmin(τ ) has ever taken, or more formally,

G(τ) = sup
06z6τ

bmin(z). (7)

Values ofb greater thanG(τ) must by definition be greater than every valuebmin has taken
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up to a timeτ . This allows (6) to be simplified to

∂C(b, τ )

∂τ
= −(KC(b, τ )+ 1)+ b(K + 1) (8)

for b > G(τ). This can be solved by substitutingC(b, τ) = α(τ)b + β(τ) and comparing
coefficients ofb. With the initial conditionC(b, 0) = b (so binit = 0), the result is

C(b, τ) = b + b − 1

K
(1− e−Kτ ). (9)

The fact thatC(b, τ) is linear means that the barrier distributionQ(b, τ) is uniform for
b > G(τ), as expected. The solution (9) holds fromb = 1 down tob ≈ G(τ), where the
continuum approximation starts to break down and we have entered into the asymptotic tail.
Since there are only O(1/N) clusters in this tail, the value ofG(τ) will correspond to the
point at whichC(b, τ) is zero, i.e. C(G(τ), τ ) = 0. Together with (9) this allows for the
time-dependent form ofG(τ) to be found,

G(τ) = 1− e−Kτ

K + 1− e−Kτ
. (10)

Ray and Jan have also found this result by an alternative method [19]. The threshold value
of b in this mean-field model is therefore

b∗ = lim
τ→∞G(τ) =

1

K + 1
(11)

which is smaller than in the exact model.
In this approximation, the mean barrier heightb̄ behaves in the same way as the gap

function. This is because, to O(1/N), there is no tail forb < G(τ) and the barrier
distribution is uniform forb > G(τ), so b̄(τ ) = (1 + G(τ))/2, which is just a linear
rescaling. Hence we expectG(τ) to vary logarithmically withτ . When the expression for
G(τ) given in (10) is plotted against logτ it exhibits a linear region similar to the exact
model, but not extending quite as close to the steady state. The gradient ofG(τ) in this
log–linear plot is

dG(τ)

d(ln τ)
= τ dG(τ)

dτ
= τG′(τ ). (12)

The linear region occurs around the point where the gradient is stationary, i.e. when the
second derivative is zero,

d

d(ln τ)

(
dG(τ)

d(ln τ)

)
= τ(G′(τ )+ τG′′(τ )) = 0. (13)

The solution withτ = 0 corresponds to the singularity in lnτ and can be ignored. Using
(10), the non-trivial solution is

τ = 1

K
tanh

K

2
(τ + τ0) (14)

where the constantτ0 = (ln(K + 1))/K. Since the slope is roughly constant in this region
there is no need to find the exact value ofτ that satisfies (14). Instead we observe that, for
largeK, the tanh function is roughly equal to 1 for allτ > 0, so an approximate solution
is τ ≈ 1/K and hence the slope is

dG(τ)

d(ln τ)

∣∣∣∣
τ≈ 1

K

≈ Ke

[(K + 1)e − 1]2
. (15)

We now turn to consider the effect of the variable timestepδt as defined in (3), which
depends onbmin and e0. The quantitybmin is unknown, but we know from the discrete
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model that it fluctuates between 0 andG(τ) and therefore substitutingG(τ) for bmin(τ )

gives a qualitatively identical solution. The new timescale is denoted byt (τ ) and is defined
by

dt

dτ
= exp

{
µ

(
e0

e0 −G(τ)
)}

. (16)

For smallτ , G(τ) = τ +O(τ 2) and (16) can be solved with the initial conditiont (0) = 0
to give

t (τ ) = eµ
(
τ + µ

2e0
τ 2+O(τ 3)

)
(17)

which is linear up toτ = O(e
1
2
0). The behaviour oft (τ ) for largeτ depends upon whether

e0 is greater than, less than or equal to the threshold valueb∗ = 1
K+1. For e0 > b∗,

G(τ)→ 1
K+1 asτ →∞ and consequently

t ∼ τ exp

{
µ

(
e0

e0 − 1
K+1

)}
. (18)

The timescale is stretched by a constant factor, but otherwise the system approaches the
same statistical steady state as before. Fore0 < b∗, (16) becomes singular at the point
τ = τcrit at whichG(τcrit) = e0. Sinceδt diverges there are no more reconfigurations and
the system is in a frozen steady state. The precise nature of this singularity can be found
by substitutingτ = τcrit − ε into (16), with ε small and positive. Asε → 0, t (τ ) diverges
according to

dt

dτ

∣∣∣∣
ε→0

∼ eA/ε (19)

where the constant

A = µ e0

(1− e0)(1− (K + 1)e0)
. (20)

Finally, for e0 = b∗ (16) can be algebraically reduced to

dt

dτ

∣∣∣∣
τ→∞

∼ exp

{
µ
K + 1

K
eKτ

}
(21)

for largeτ , which is divergent.
Now that we have confirmed thate0 has the same effect in the mean-field model as

in the exact model, we need to see what it does to the rate of logarithmic decay. This is
straightforward fore0 � b∗ since

t = eµτ +O(e−1
0 ) (22)

so to first order ine−1
0 the timescale is just stretched by a constant factor, which does not

alter the gradient in a log–linear plot. This means that slope ofG(t) versus logt is the same
as the slope ofG(τ) versus logτ and (15) can be used without modification. For instance,
in the exact system with largee0 the slope is approximately 0.048 in three dimensions,
whereas the value predicted by (15) forK = 6 is 0.050.

Modifying (15) to incorporatee0 < ∞ is troublesome and we have been unable to
derive a general formula. Nonetheless there is still some hint of a correspondence between
this analysis and the experiments. In [7] Knightet al introduce a parameterτ which we
call τexp so as not to confuse it with ourτ . τexp gives a rough measure of the timescale
of the relaxation process. We tentatively equate this to the quantity dt/dτ , and indeed
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the experimental plot ofτexp versus0 looks similar to the form of dt/dτ given in (16).
However, this is not a robust feature of the model and so it is impossible to come to any
concrete conclusions. The experimental data also shows a noticeable change in behaviour
for small 0. This could be caused the system entering into the frozen steady state before
the logarithmic relaxation has had a chance to take hold, ie. whenτcrit � 1

K
, although it

could just be the effect of the initial compaction.
Finally, we demonstrate how this analysis can be extended to incorporate energy

dissipated by a reconfiguring cluster to its nearest neighbours. Suppose that each adjacent
cluster receives an energyediss and immediately reconfigures if its barrier is smaller than
this, dissipating a further energyediss to each of its neighbours, and so on. Using the same
mean-field approximations as before, the net effect of this avalanche between perturbations
is to increase the number of barriers that change value at each time step. Of theK random
nearest neighbours,Kediss will immediately reconfigure and so the total number of new
barriers per time step dτ is now

K +K(Kediss)+K(Kediss)
2+K(Kediss)

3+ · · · = K

1−Kediss
(23)

for ediss < 1
K

. Larger values ofediss are unphysical since they result in perpetual
reconfiguration. The new rate equation forC(b, τ) is

∂C(b, τ )

∂τ
= −θ(b − bmin(τ ))− K

1−Kediss
+
(

1+ K

1−Kediss

)
b (24)

which can be solved as before to give

C(b, τ) = b + b − 1

K
(1−Kediss)

(
1− exp

[
− Kτ

1−Kediss

])
(25)

for b > G(τ). This is the same as the solution already given in (9) except thatK has
been replaced by the effective number of random nearest neighboursK/(1−Kediss). The
timescale is similarly stretched by the constant factor 1− Kediss. Hence the inclusion of
energy dissipation in this manner does not alter the behaviour of the system, nor does it
change the slope ofG(τ) in a log–linear graph.

5. Summary and discussion

We have presented a theoretical model for the compaction of granular materials by low-
intensity perturbations which appears to agree well with a range of experimental results.
This includes the logarithmic relaxation, the effect of varying the intensity of vibration
resulting in a so-called ‘annealing’ curve, and the power spectrum of density fluctuations in
the steady state. We have segmented the granular media into local subsystems or clusters
which represent ensembles of granules that collectively reconfigure. Associated with each
cluster is a potential-energy barrier against reconfiguration. Whenever a perturbation gives
a cluster enough energy to cross over its barrier into a new configuration, nearby clusters
are disrupted and their barriers take on new values. The system behaviour is dominated by
this dynamical interaction between clusters and fine detail such as the choice of distribution
for the barrier values makes little or no difference. Indeed, it is this very robustness that
leads us to hope that the model might correctly describe the mechanism underlying the
compaction process, despite its algorithmic simplicity.

It has been suggested that standard statistical mechanics can be applied to granular
materials if the fundamental quantities involved are suitably reinterpreted [20, 21]. Volume
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plays the role of energy, and the quantity conjugate to volume is known ascompactivity,
which is the analogue of temperature. The compactivity is infinite when the system is at
its maximum volume and zero when it is at its minimum. Our model can also be described
in terms of volume rather than energy since the external perturbations increase the volume
of the system as well as its energy. Hence we can assign a volume barrier to each cluster
which must be exceeded for reconfiguration to take place. In this way, we can see the
beginnings of a link to the modified statistical mechanics, perhaps with the barriers being
in some way related to the compactivity. This is just speculation, however, and further
investigation is required. There are also be many ways in which the model can be enhanced
to make it more physically realistic. For instance, the model is currently isotropic, but real
granular media exhibits a density gradient with the densest regions near the bottom.

There is another way to compact granules into a smaller volume, and that is simply to
apply a uniform pressure. This forces the granules to rearrange into a higher density state,
as with the perturbation-induced compaction studied in this paper, although the granules
are now also subject to deformation and fracturing. A theoretical model for compaction by
applied pressure has been proposed which treats the media as being composed of a number
of subsystems, each of which is associated with a pressure barrier [22]. This obviously
bears some similarity to the approach we have adopted in constructing our model. A
crucial difference is that the subsystems in the pressure model do not interact and the values
for the barriers are simply drawn from a suitable distribution. In our model, the choice
of distribution is unimportant and it is the dynamical interactions between subsystems
that dominates the system behaviour. It would be interesting to see if the interacting
cluster picture can be applied to this or any other experimental situation involving granular
materials.
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